Cordial Labelling Of K-Regular Bipartite Graphs for K = 1, 2, N, N-1 Where K Is Cardinality of Each Bipartition
نویسندگان
چکیده
منابع مشابه
k-Remainder Cordial Graphs
In this paper we generalize the remainder cordial labeling, called $k$-remainder cordial labeling and investigate the $4$-remainder cordial labeling behavior of certain graphs.
متن کاملDynamic Routing on Arrays References P N K=1 W K . an Easy Calculation Shows That W K = 2 F(k=n) N + O( 1 N 2 ), Where
A measure for asymptotic eeciency of a hypothesis based on the sum of observations. 4] B. Hajek. Hitting-time and occupation-time bounds implied by drift analysis with applications. Dynamic routing on arrays 17 with total expectation less than 0. Hence the tail of the distribution of M s;h is exponentially decreasing. As in Theorem 4.7, we can show that a packet's head generated at relative tim...
متن کامل$k$-Total difference cordial graphs
Let $G$ be a graph. Let $f:V(G)to{0,1,2, ldots, k-1}$ be a map where $k in mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $left|f(u)-f(v)right|$. $f$ is called a $k$-total difference cordial labeling of $G$ if $left|t_{df}(i)-t_{df}(j)right|leq 1$, $i,j in {0,1,2, ldots, k-1}$ where $t_{df}(x)$ denotes the total number of vertices and the edges labeled with $x$.A graph with admits a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IOSR Journal of Mathematics
سال: 2013
ISSN: 2319-765X,2278-5728
DOI: 10.9790/5728-0643542